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How good is the collimation of jets?

Consider unresolved small-scale emission structures,

not the large-scale appearance!
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Results of radiation modelling of TeV blazars

Depends on Doppler factor D, = 10D

size of emission zone R < (10" cm) Dy,
plasma density in emission zone n, > (10° cm™?) Lycacus Dig” Bg'” Ersr’

energy density in magnetic field is moderate

Individual high-density plasma clouds
Energy reservoir in bulk kinetic energy
One cloud may account for extended high states

How can they remain collimated?
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Expansion changes variability!

We observe 7., ~ 1 hr variability timescale over 71,,, ~ days of high state!

Energetically preferred: one or few plasma clouds make the high state!

e increased light travel time (Compton components)

galaxy-frame opening angle ) < '™ (1y0/Tons)

e modified particle cooling and escape
severe for hadrons and SSC: ¢ < ' (7ya/Tobs)

e differential Lorentz contraction

opening angle ) < I'! \/ Tvar/ Tobs
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Lightcurves for a specific AGN model

How is bulk kinetic energy
transferred into radiation?

What is the physics of

collisionless collision fronts?

Do shocks form?
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What if a shock forms?
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Assume only one crossing (P& S 2000)

High bulk Lorentz factor needed or
secondary acceleration.

Most energy resides with hadrons.

Hadronic emission important!

Many secondary electrons!
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Typical multi-band spectrum without electron acceleration
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LOG(F) [o.u.])

Example: 100-GeV lightcurves

Three periods: 7.4 h, 22 h, and 74 h
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Conclusions

If one emission zone produces many short-lived flares over a few days,

then very good collimation is required!

Important: ratio of variability time and activity time!

e differential Lorentz contraction independent of model
e increased light travel time for leptonic models

e modified particle cooling and escape

GLAST will provide better sampled lightcurves!
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Collimation vs. deceleration
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